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An approximate technique for estimating the entropy S with computer simula-
tion methods, suggested recently by Meirovitch, is applied here to the Metropo-
lis Monte Carlo (MC) simulation of the hard-square lattice gas in both the grand
canonical and the canonical ensembles. The chemical potential p, calculated by
Widom’s method, and § enable one to obtain also the pressure P. The MC
results are compared with results obtained with Padé approximants (PA) and are
found to be very accurate; for example, at the critical activity z, the MC and the
PA estimates for S deviate by 0.5%. Beyond z, this deviation decreases to 0.01%
and comparable accuracy is detected for P. We argue that close to z, our results
for S, p, and P are more accurate than the PA estimates. Independent of the
entropy study, we also calculate the critical exponents by applying Fisher’s
finite-size scaling theory to the results for the long-range order, the compressibil-
ity and the staggered compressibility, obtained for several lattices of different
size at z.. The data are consistent with the critical exponents of the plane Ising
lattice B =1/8, =1, y=7/4, and a = 0. Our values for B and » agree with
series expansion and renormalization group results, respectively. @ = 0 has been
obtained also by matrix method studies; it differs, however, from the estimate of
Baxter et al. o = 0.09 + 0.05. As far as we know y has not been calculated yet.

KEY WORDS: Monte Carlo; hard-square lattice gas; critical exponents;
entropy; pressure.

1. INTRODUCTION

Calculation of the entropy S with the commonly used Metropolis Monte
Carlo (MC)V simulation is difficult since entropy is related to the sampling
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probability which is not provided by this procedure. An approximate
technique for estimating entropy with any computer simulation method has
been suggested recently by Meirovitch and applied very successfully to the
MC simulation of the square Ising lattice’® and the square lattice gas
model.’¥ For the lattice gas model (described in the framework of the
canonical ensemble) very accurate estimates for the chemical potential p
have been obtained by employing the method of Widom and Jackson
and Klein,>® and a method suggested by Alexandrowicz.(”® These results
for p and S lead (using basic thermodynamic relations) to very accurate
estimates also for the pressure P.*® As far as we know this is the first time
the pressure of a lattice gas has been calculated by MC, probably because
the usual method for estimating P, based on the virial theorem, is not
applicable to lattice systems. The new technique is based on an approxi-
mate formula for the entropy in which the entropy is expressed as a
function of the frequency of occurrence of certain local states.? These
frequencies are calculated from a single MC run, which makes this tech-
nique substantially more efficient than the commonly used reversible
thermodynamic integration.””> Also, in contrast to the “multistage sam-
pling”!® and Salsburg’s method!V the accuracy of the new technique
improves with increasing system size. It is also more accurate than other
methods for estimating entropy (see Ref. 8 and methods reviewed by
Binder in Ref. 12). The formula for the entropy and the definition of the
local states are based on the concepts of the stochastic models (SM)
method, which is a computer simulation technique independent of the
commonly used MC procedure, suggested by Alexandrowicz.(**~'> Under-
standing these concepts is therefore essential for applying the technique for
the entropy to various systems. It should be pointed out that the entropy, in
addition to being a measure of the extent of order in a system and an
essential ingredient for calculating the pressure, leads to the free energy,
which enables one to define the most stable state of a system as that with
minimum free energy. This criterion is useful when two simulation runs
lead the system to different free energy minima. The free energy enables
one also to determine precisely the transition point in the case of a
first-order phase transition, where two phases with the same free energy
coexist, (1617

In view of the wide interest in the calculation of entropy, of the lack of
efficient calculation methods, and of the extremely accurate results ob-
tained with the new technique for the Ising and lattice gas models,*? it
seems desirable to extend the technique to continuum models for fluids as
well. For such systems, (e.g., the model of hard spheres), the volume will be
divided into cells (much smaller than molecular size) and a discrete set of
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local states will be defined by taking into account the various possible ways
to occupy a certain group of cells with molecules. The continuum model is
thus approximated by a lattice gas in which occupation of a cell necessi-
tates the exclusion of molecules in several neighboring cells. Such exclusion
has not been treated yet by the SM method nor does it exist in the lattice
gas model studied previously,® which only forbids double occupancy of a
cell. We have therefore decided (before treating a complex continuum
model) to test the efficiency of the technique for the MC simulation of the
hard-square lattice gas with first neighbor exclusion, which is a simple
model taking into account the effect of repulsion in a nontrivial manner.
This model has been studied extensively by various approximate tech-
niques*®39; however, as far as we know, no detailed MC study of it has
been published. Many of these studies®*>> have shown that the model
undergoes a second-order phase transition, and relatively accurate esti-
mates for the critical values of the activity, the density, the pressure, and
the entropy have been obtained. In this work the entropy and other
thermodynamic quantities are calculated in both the canonical ensemble
(CE) and the grand canonical ensemble (GCE). It should be pointed out
that in the GCE, in contrast to the CE, the isothermal compressibility K,
can be expressed as a function of the fluctuations in the density®*® and
therefore can be conveniently calculated with the MC procedure. The MC
results are compared to results obtained with Padé approximants (PA),
based on the series expansion data of Gaunt and Fisher (GF)®® and to
results obtained by the matrix method.?’?» We also suggest a new
procedure for estimating the accuracy of our results based on calculating
successive approximations for the entropy.

In the second part of this work (which is independent of the entropy
study), we calculate the critical exponents of the hard-square lattice gas.
Ground-state symmetry considerations classify this model in the same
universality class as the zero-field two-dimensional Ising lattice, which
suggest that the two models have the same critical exponents.*” However,
these considerations are phenomenological and therefore an effort has been
made in recent years to check their validity by calculating the critical
exponents of the model, with various techniques. Indeed, GF*® and
Baxter, Enting, and Tsang (BET),®® using series expansion techniques,
estimated with high credibility the Ising model value 8 = 1/8, where § is
the critical exponent of the long-range order R; recent renormalization
group studies (based on Nightingale method®®) by Récz,*» Wood and
Goldfinch,®® and Kinzel and Shick®® all estimate, with a very good
approximation, the Ising model value » = 1, where » is the critical exponent
of the correlation length.* Substituting this result in the hyperscaling
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relation®” dv = o — 2 leads to the Ising model result a = 0, which means
that the compressibility K, diverges logarithmically. However, GF did not
find divergence of K at the transition point and BET, who analyzed longer
series, estimate a =0.09 £ 0.05, which led them to speculate about the
possibility of a non-Ising model set of exponents. On the other hand,
transfer matrix studies of Runnels,*” Ree and Chesnut,*® and Runnels
and Comb®® show that, to a high degree of accuracy, the maximum
compressibility of finite-width strips is proportional to the logarithm of the
width, i.e., the compressibility has a logarithmic singularity. Another sup-
port for a logarithmic singularity is the estimate —0.0196 < « < 0.0174
made in Ref. 33. It should be pointed out that the critical exponent y of the
staggered compressibility x* has not been estimated by any of these
methods. In view of the controversy about the value of & and the lack of an
estimate for y we calculate in this work the critical exponents of the model
using the MC procedure. This can be carried out either by employing
Fisher’s finite-size scaling theory“**) (see also Refs. 42-46) or by a
method suggested recently by Swendsen.*”*® In the present work we use
Fisher’s method, which, however, requires knowing the critical activity z,
with sufficient accuracy. We do not attempt to calculate z,, which would
need a lot of computer time, but rather use the relatively accurate estimate
of BET (which is also very close to the estimates obtained by other
methods®3?), At z, we carry out very long MC runs in the GCE for six
lattices of size (L X L) from L = 12 to L = 64. The results for K, x* and
R enable us to estimate the corresponding critical exponents «, y, and 3,
respectively, and also to obtain ».

2. THEORY

2.1. The Hard-Square Lattice Gas

Consider a square lattice of ¥ = L X L sites, each of which can be
either empty or occupied by a molecule. There are N molecules on the
lattice distributed among the V sites. The density of the molecules is
defined as p = N/ V. The multiple occupancy of sites is forbidden and the
interaction potential is + co for particles occupying nearest-neighbor sites
but zero otherwise. At maximum density p, = 1/2 the particles pack in a
regular array on the sites of one sublattice, which we take to be the A
sublattice; the second sublattice, B, is empty. Of special interest is the
critical behavior of the compressibility K, the staggered compressibility
x*t, and the long-range order R which is determined by the critical
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exponents a, v, and 8 respectively. R is defined by

R = (0, = pb)/Po = 2(Ps — P3) (M
where p, and p, are the sublattice densities and
P=p,t 0 &)

In the GCE, K, and x ™ can be expressed as functions of the fluctuations in

p(z) and R(z), respectively, where z is the activity,>®
KTpKy = ((p(2) = <(2))") V/<o(2)) (3)
x*={((R(z) ~<{R(zp)*)V /4 (4)

In these equations k is the Boltzmann constant, 7_"_ the absolute temperature,
and ¢ ) denotes the GCE average. Estimations R for (R), x * for x ™, etc.
can be obtained from MC samples of M configurations:

. M
R=M”‘t§1R[i(t)] 5)

M 2
X" =@M v {Rli(n] - k) ©)

here i(¢) denotes the configuration / obtained at time # of the MC process.
We estimate also the absolute value of R, by |R|,

M
[Rl=m" 3 |RLi(0)]| 0

2.2. Estimation of the Chemical Potential

The chemical potential of the system, p,, can be calculated either by a
method suggested by Widom*® and by Jackson and Klein® or, alterna-
tively, by a method suggested recently by Alexandrowicz.>’® For the
present model, however, the two methods are identical and give

p,/ kT = logz, = —log(<p,) ®)

where (p,> denotes the average density (in the CE or the GCE) of vacant
sites which are surrounded by nearest-neighbor vacant sites. An estimation
R, for p is obtained similarly to Egs. (5) and (6) by

M
fi, = _1og{M—1§1p,,[i<t)}} ©)
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2.3. Calculation of the Entropy

The entropy is estimated by means of a formula described recently for
the square Ising lattice®® and the square lattice gas model.® In this
formula the entropy is expressed, approximately, as a function of the
frequency of occurrence of certain local states, related to the occupancy of
a site and its neighbor sites. This formula, derived on the basis of the SM
method considerations (see Refs. 2, 14, and 15), is general in the sense that
it does not depend on the model. The definition of the local states,
however, changes from model to model. Since the hard-square lattice gas
and the lattice gas previously studied®® are both based on nearest-neighbor
interactions and have the same geometry, their local states are very much
the same. They differ only in the high-density regime where the anti-
ferromagnetic-like long-range order of the hard squares should be taken
into account.

In the present work we employ four sets of local states which define
four approximations for the entropy Sq, Sq0> Sgr, and S;¢,. These approxi-
mations enable one to estimate the accuracy of our best approximation
S10r as will be discussed later. We shall describe now the local states for S;.
Consider an aribitrary site k of the lattice and six of its neighbor sites, as
illustrated by the solid circles in Fig. 1. Two of these neighbor sites are on
the left side of site & within the same row / and the other four belong to the
(I = Dth row. Each site can be either occupied by a particle, or vacant,
making up two different states, and therefore 2° = 64 distinct local states
are possible; however, in order to decrease their number we apply addi-
tional approximation. For sites K —2 and k& — L + 3 we distinguish only
between the three states (rather than four) vacant-vacant, occupied-
occupied, and vacant-occupied (see discussion in Refs. 1, 40, and 41).
Therefore m = 3 X 2* = 48 local states of the above defined six sites are

- L >

K-L k-l K-tz k-L+3 kL4 kL+5

1 ———ee O O O ©C e e @& & o

k-4 k-3 k-2 k-1 K

® @ @ @ [0] O O O O O

w0 0o o o0 O O O O O O

Fig. 1. A diagram explaining the definition of the local states 1, +; I, — and 7, used for
estimating the entropy [Eq. (10)}. The six solid circles around the central circle & denote the
lattice sites which define the local states / for the lowest approximation of the entropy; S¢; two
of them are in the same row [ as the central circle k& while the other four belong to the
preceding row / — 1. The solid and shaded circles (altogether 10) denote lattice sites around
site k considered in the better approximation Sy,.
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defined (rather than 64) and are denoted by I, 1 < I < 48. The two states
of the central site k need also to be taken into account and are denoted by
— or + according to whether the site is empty or occupied, respectively.
Hence altogether 2 X 48 = 96 local states are defined and denoted by 7, +
and I, —. The ensemble frequencies of occurrence of local states I, 7, +,
and /, — are denoted by »;, v, ,, and », _, respectively. It is shown in Ref.
2 that an approximation S for the entropy can be defined by means of the
local states frequencies:

o= S og(vy . /v) + vy, _log(v, - /%) (10)
I=1

pp=v  +trp_ (11)

We denote by S, the approximation based on six neighbor sites and
m =48, described above. It should be pointed out that because of the
nearest-neighbor infinite repulsions many local states are excluded and the
number of the allowed ones is much smaller than 48. The frequencies are
calculated over a sample of M configuration,

b= (MV)*‘EIN,,+[i(t)] (12)

where N; [i(#)] is the number of times local states 7, + appear in configu-
ration i, sampled at time ¢, just as in Eq. (5); 7, _ is defined in a similar
way. Substituting the 96 »; , and 7, _ into Eq. (10) gives an estimate for S.
Equation (10) defines local states up to a cutoff of six neighboring sites
instead of the entire row of L lattice sites (k— L,k+ L+1...k—1),
which defines the exact set of local states (see discussion in Refs. 2, 14, and
15); therefore Sg > S.,,.;- Obviously, the larger the number of sites consid-
ered the better the representation of the long-range density correlations and
hence the approximation (which means lower entropy). We define also a
larger set of local states, based on the former six lattice sites and the four
sites k =3, k-4, k— L+4, and k — L+ 5, illustrated by shaded circles
in Fig. 1. As in the previous approximation we distinguish only between
three states for sites kK — L + 5 and k — 4, and therefore the number of
local states of type I is m =3 x 2% =768. This approximation for the
entropy based on 10 sites is denoted S,.

The two sets of local states defined so far take into account short-range
effects but ignore the long-range order which prevails at high densities. For
example, if a site k& (with local states I) belongs to sublattice 4 (which is
assumed to be more occupied than B) the probability of finding it occupied
is larger than for a site on sublattice B with the same local state I. We take
into account the long-range order effect in the following way: in
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addition to the “short-range” local states previously defined we define also
two “long-range local states” for a site k, which are determined according
to whether site k belongs to the more occupied sublattice or to the less
occupied one. We therefore obtain two additional approximations for the
entropy, based on S¢ and S,,: One with m = 2 X 48 = 96 local states, which
is denoted S, , and the second with m = 2 X 768 = 1536, which we denote

SlOL'

2.4. Calculation of the Pressure

The pressure P can be obtained from the free energy, the chemical
potential, and the density by means of a basic thermodynamic relation (see

Ref. 3). For the hard-square lattice gas, however, only the entropy contrib-
utes to the free energy and therefore

P/kT = p(p/kT + S/kN) (13)

Since p and S can be estimated by methods described in the previous
sections, P can be estimated as well.

3. RESULTS AND DISCUSSION

3.1. Method of Calculation

We impose on the lattice gas periodic boundary conditions and simu-
late it with the MC procedure in both the CE (N,V,T) and the GCE
(p, V, T). In the CE the process is carried out as follows: one starts with a
lattice filled with N randomly distributed molecules. In each step of the
process a pair of occupied and vacant sites are selected at random with the
help of a random number generator. If the move of the molecule from the
occupied to the vacant site is forbidden another pair of such sites is
selected. If the move is allowed a random number R, 0 < R < 1 is pro-
vided, and the molecule exchanges sites if R < 0.5 and remains at its
original site if R > 0.5. For p # p, the lattice size is L = 80. The resuits
were obtained from runs of nM = 1.44 x 10®* MC steps where M = 15000
constitutes the number of configurations [Eq. (5)] sampled at intervals of
n=15x L?=9600 MC steps. To exclude the relaxation to equilibrium
from the starting configuration the averaging was started only after 0.6 X
10° MC steps.

The MC process in the GCE is started from a configuration with an
arbitrary number of molecules distributed at random. The lattice sites are
visited in a predefined order and a molecule is removed or added to each
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site according to the following criteria:

(a) If site k is vacant but excluded the next site is treated.

(b) If k£ is a vacant not excluded site a molecule is added to it with
probability p,, (v—vacant, o-—occupied):

/1 if z>1 14
Pro {z it z<1 (%
Obviously, site k¥ remains vacant with probability p,, =1 — p,,.

(c) If site k& is occupied the molecule is removed or remains with
probabilities p,, and p,, = 1 — p,, respectively:

=)zt if z>1
Pov {1 ifoz< ()
Beyond the transition point we used L = 80 and performed nM = 2.88 X
108 MC steps, where n =3 X L?= 19200 and M = 15000. At the critical
activity z, much longer MC runs were carried out (see Section 3.2.3). In
order to exclude the relaxation to equilibrium the averaging was started
after 1.92 X 10’ MC steps.

3.2. Results

The MC results obtained in the GCE (at z # z,) and in the CE are
summarized in Tables I and II, respectively. In Table III we present the
GCE results calculated at the critical density z. for six lattices of size
L = 12 to L = 64; this enables one to obtain the critical exponents. In order
to compare the results of Tables I and 11, the GCE simulations have been
carried out at p values which lie within the statistical error of the values p,
appearing in Table II. For comparison we also provide estimates obtained
from [6, 6] and [4,4] PA (based on the series expansion data of GF) for the
various thermodynamic quantities. One should bear in mind, however, that
these estimates are approximate and their accuracy decreases as the transi-
tion point is approached.

3.2.1. Results for the Grand Canonical Ensemble. The MC
results calculated in the GCE at z # z_ are presented in Table I. It should
be pointed out that p, z,, p, R, K; and x* are defined by Egs. (1)-(9)
without any approximation and therefore their accuracy depends mainly on
the sample size M and the lattice size L. However, the accuracy of the
results for the entropy 8o, Sig, Si6, and S and hence for the pressure P,
is determined also by the extent of approximation imposed on Eq. (10), i.e.,
the definition of the local states. The PA estimates become inaccurate as
the transition point is approached; for example: for u = 1.241 the PA value
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for x T is negative! And the PA estimate for p, which according to Table II
should be very close to 0.35, is 0.33. Some indication for unreliable results
is the existence of significant difference between estimates of different PA
(e.g. [6,7], [6,6], [7,6] etc.). In fact, in the low-density regime close to the
transition the estimates of the [7,6] PA agree much better with the MC
results than the values of the [6, 6] PA appearing in the table.

The deviations of the average values of p, from p are relatively small
and range from 0.1% to 0.01%. The results for p should be very close to the
corresponding values of p in Table II (see discussion in Section 3.1), and
indeed the deviation is small, from 0.005% to 0.25%. The deviations of the
average values of the MC results for p from the corresponding PA estimates
are even smaller, except for p = 0.82272 and p = 1.241. The MC and the
PA results for R agree within 0.01% to 0.5%, and those for K, within 0.5%
to 6% (again except for p = 0.82272 and p = 1.241). For x*, however, the
two sets of results agree only far from z,, probably due to the inaccuracy in
the PA estimates discussed above.

Of special interest are the results obtained for the entropy. First, it
should be noticed that in the low-density regime, where long-range order
does not exist, S5, = S and S5, = Sy, as expected. A slight deviation
from this picture occurs only for y = 1.241, but this stems probably from
finite size effects near the transition point. However, in the high-density
regime (where R > 0) the “long-range order local states” affect the entropy
and S;o, < S5 Sgz € Sg. For the low-density regime the results for Sy, ,
Si0s Ser, and S are equal within the statistical error (except for p =
0.82272); for the high-density regime S,,, = S,; within the statistical error.
We can therefore assume that for these calculations Sy, is accurate with-
in the statistical error [since imposing better approximation on Eq. (10)
probably would not lower the entropy to a detectable extent, see discussion
in Section 2.3]. The PA estimates for the entropy have been obtained from
u and the PA values for P and p, using Eq. (13). Except for p = 0.82272
and p = 1.241 small deviations between the PA and the MC values are
detected (from 0.05% to 0.2%), and this supports our previous estimation of
the accuracy of the MC results for S. The MC results for the pressure have
been obtained from S,,,, p and p, employing Eq. (13). Again, except for
pu=0.82272 and p = 1.241, these results agree well with the PA values,
where the deviations range from 0.01% to 0.05%.

In Table III we present the GCE results for p, z,, p, P, and S obtained
at the critical activity z, (for details about the simulation see Section 3.2.3).
For comparison we provide in the bottom rows of the table the critical
values of these quantities obtained by Ree and Chesnut® and by BET
and GF; in both rows the critical values for the entropy have been obtained
by substituting p_, p, and P in Eq. (13). The agreement between the MC
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values and the PA estimates is very good; for L = 64, the deviation is
~0.08% for p,, 0.3% for p, and 0.5% for the entropy, and the values for the
pressure are equal within the statistical error, which is 0.6%. A comparable
agreement is found also between the MC results and the results of Ref. 29.

To summarize: very good agreement between the MC and the PA
results for S, P, and p has been obtained at z # z, not too close to z,.
However, we have given some indications that close to z, the PA estimates
are not accurate. The accuracy of the MC results for p, S, and P, however,
is less affected in the critical region, as can be deduced from the good
results obtained in Table III at z, itself. We therefore have reason to believe
that close to z, the MC results are more accurate than the PA ones.

3.2.2. Results for the Canonical Ensemble. Results obtained in
the CE for given values of p are summarized in Table II. In this ensemble,
in contrast to the GCE, we were not able to calculate K, and x* since they
cannot be expressed as functions of fluctuations in p and R, respectively.
Even though the same lattice size and approximately the same number of
MC steps are used for both the CE and the GCE calculations the statistical
error of the results for y, for p/p, > 0.4 is about an order of magnitude
larger in Table I1 than in Table I. The statistical error of the entropy,
however, is slightly lower than that detected in Table 1, and the correspond-
ing results for §' are very close in the two tables. We have also calculated S
and Sg; in the CE and detected for them the same behavior as in Table I;
therefore we present in Table II only S,y, and S;,. The PA estimates for
the entropy have been obtained directly from series expansion for S(p)
derived by GF, and not with Eq. (13) as in Table I. The agreement between
these estimates and the corresponding MC results is generally comparable
to that of Table I. For p/p, = 0.6 and 0.7, however, the present results fit
better, probably due to the more accurate PA values. The difference
between the MC and PA results for R is also comparable to that which has
been detected in Table I. The statistical error of the MC results for P,
however, is affected by the relatively large statistical error in y, and
therefore is about an order of magnitude higher than in Table I.

We have simulated the system also at the critical density, p,/py=
0.736, estimated by BET. For L =80 the long-range order R did not
change sign during the simulation (i.e., sublattice 4 was always more
occupied than B); we therefore decreased the lattice size to L =40 and R
changed sign only once. The results at p, for L =40, M = 15000, and
n = 2400, presented in the table, have been therefore obtained before a
convergence has been detected. They are, however, very close to the
corresponding results in Table III calculated at the critical activity z,
(where R changed sign much faster).
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To summarize: we find the simulation in the CE to be less efficient
than in the GCE with respect to the system chemical potential, the pressure,
and the long-range order at p,. The accuracy of the results for the entropy,
however, is found to be about the same for the two ensembles.

3.2.3. The Critical Exponents. In Table IIl are presented the
GCE results obtained at the critical activity z, = 3.7962 (estimated by
BET), for six lattices of different size, from L = 12 to L = 64. Very long
MC runs have been performed with M = 10° and n = 4L? (see Section 3.1).
For each lattice the results are the averages of results obtained from several
such MC runs with different starting configurations and different random
number sequences.

The critical exponents of x*, K, and R can be estimated by applying
Fisher’s finite-size scaling theory®#! (see also Ref. 42-46) to their results
in Table III. According to this theory x* should increase with L as

x*=BL""  atz, forlarge L (16)

where v and » are the critical exponents of x* and the correlation length,
respectively,*® and B is a constant. A similar relation is expected for [R|
[Eq. (7)], — B replaces v.(®

A plot of log|R]| vs log L (for 5 points excluding for L = 64) gave a
straight line with a slope 8/» = 0.125(5) and B =0.90(1) (the indicated
error, here and below, refers to the last decimal place). This slope is equal,
within the statistical error, to the value 8= 1/8 estimated with high
credibility by both GF and BET and therefore suggests that » = 1. This
value is in agreement with the renormalization group estimates for » of
Refs. 32-34. At z, one would expect (R) to vanish; in the simulation,
however, we have obtained several times R~0.2 [Eq. (5)], due to imbalance
in the population of sublattice 4 and b. We therefore present two sets of
results for the staggered compressibility, x;* and x,', in which the fluctua-
tions in R [see Egs. (4) and (6)] are calculated around R and zero,
respectively. For L =24, L =32, and L = 64 x," differs significantly from
x5 - Log-log plots of the results for x," give better fit to a straight line than
those for x;", and therefore we use them for our analysis. A slope y/» =
1.74(2) with B = 0.22(1) is obtained from five points excluding L = 64
(however, for L = 64 the best straight line passes very close to the MC
value 310). This siope is very close to y = 1.75 known for the two-
dimensional Ising lattice®™ and we therefore assume y = 1.75 also for the
hard-square lattice gas, which is consistent also with our suggestion » = 1.
For the compressibility K we apply a slightly different analysis. In order to
check the possibility of both, a logarithmic (a« = 0) and an exponential
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divergence (« > 0), we fit the data (excluding for L = 64) to the function
used by Domany et al.(*?

Kr=3(@Le—1)+4 (17

where B and A are constants. Obviously, when a — 0 this function becomes
K;=BlogL+ A (18)

The best fit of the average results for K; has been obtained for B =
0.10646, 4 = 0.11563, and a = 0.000016, which means that the behavior is
approximately logarithmic. Substituting L =64 in Eq. (17) gives 0.558,
which is very close to the MC value 0.56. For comparison, Ree and
Chesnut®” obtained 4 = 0.10849 and B = 0.12372 by fitting their data to
Eq. (18). 1t should be pointed out, however, that our fit is based on the
average values of K and does not take into account the statistical error.
Hence in order to increase the accuracy of the above result larger lattices
should be studied for larger samples.

It should be pointed out that finite-size scaling!***" applies to asymp-
totically large systems at the exact critical activity of the infinite system,
whereas we use here relatively small lattices and an approximate value for
z,. However, the fact that the log-log plots of the results give straight lines
indicates that the size L = 12, of the smallest lattice, as well as the accuracy
of z, are already sufficient. This conclusion is supported also by matrix
method studies®®*” which have used the present analysis with a slightly
different value for z, and obtained the same critical behavior for K.

To summarize: our data for the hard-square lattice gas model is
consistent with the critical exponents of the zero-field plane Ising model,
B=1/8 v=1, y=T7/4, and a =0. These results are in accord with
ground-state symmetry considerations of Domany er al. 7 which classify
these two models in the same universality class. Our estimate for 8 agrees
with the results of GF and BET. » = 1 has been estimated also by Racz,(®?
Wood and Goldfinch,®® and Kinzel and Schick,*® using renormalization
group techniques. The result a = 0 agrees with the matrix method results of
Refs. 27-29 and with the estimation carried out in Ref. 33, but differs from
a = 0.09(5) obtained by BET. As far as we know this is the first time y has
been calculated by any method.

3.3. Conclusions

In this work a MC study of the entropy, the chemical potential, and
other thermodynamic quantities has been carried out for the hard-square
lattice gas. The entropy has been calculated by an approximate method
suggested recently by Meirovitch,(? the chemical potential by Widom’s
method,*® and the pressure from p and S using basic thermodynamic
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relations. The system has been simulated close to and at the transition point
itself, in both the canonical and the grand canonical ensembles. The MC
results are in a very good agreement with the Padé approximant estimates,
and we argue that close to the transition point our results are more
accurate. For example, at the critical activity z, the estimates of the two
methods for the entropy differ by 0.5%. Beyond z, this deviation decreases
to 0.01%. Similar accuracy is detected for the pressure calculated in the
grand canonical ensemble. The accuracy of the entropy in the canonical
and the grand canonical ensembles is about the same, whereas the chemical
potential and the pressure are about an order of magnitude more accurate
in the grand canonical ensemble than in the canonical ensemble. The high
accuracy of the results obtained for the hard-square lattice gas gives reason
to believe that the present technique for calculating the entropy will also be
applicable to continuum models for fluids. It should be pointed out that
these results for the entropy, obtained with relatively small sets of local
states, demonstrate the local character of entropy even at the transition
point, in contrast to the second derivatives of the entropy, K, and x ™,
which are highly dependent on long-range correlations. A better accuracy
can be achieved by using better approximations for the entropy [Eq. (10)]
and enlarging both lattice and sample size. We have calculated also other
thermodynamic quantities such as the compressibility, long-range order,
etc. and found very good agreement with the Padé approximants results,
not too close to the transition point. At z, we employ Fisher’s finite-size
scaling theory**) to the MC results of several lattices. The data are
consistent with the critical exponents of the Ising model 8=1/8, v =1,
y=7/4, and a = 0, supporting the ground-state symmetry considerations
of Domany et al.®? The values for 8 and » agree with estimates of other
studies. As far as we know y has not been estimated yet and a = 0 agrees
with the matrix method and renormalization groups results, but differs
from the series expansion estimates a = 0.09(5), obtained by BET. These
results demonstrate that MC constitutes an important tool for calculating
critical exponents which is complementary to other numerical techniques.
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