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An approximate technique for estimating the entropy S with computer  simula- 
tion methods, suggested recently by Meirovitch, is applied here to the Metropo- 
lis Monte  Carlo (MC) simulation of the hard-square lattice gas in both the grand 
canonical and the canonical ensembles. The chemical potential/~, calculated by 
Widom's  method,  and S enable one to obtain also the pressure P. The MC 
results are compared with results obtained with Pad~ approximants (PA) and are 
found to be very accurate; for example, at the critical activity z~ the MC and the 
PA estimates for S deviate by 0.5%. Beyond z c this deviation decreases to 0.01% 
and comparable accuracy is detected for P. We argue that close to z c our results 
for S, bt, and P are more accurate than the PA estimates. Independent  of the 
entropy study, we also calculate the critical exponents by applying Fisher's 
finite-size scaling theory to the results for the long-range order, the compressibil- 
ity and the staggered compressibility, obtained for several lattices of different 
size at z C. The data are consistent with the critical exponents of the plane Ising 
lattice/3 = 1/8, ~ = 1, 7 = 7 /4 ,  and a = 0. Our values for/3 and v agree with 
series expansion and renormalization group results, respectively, a = 0 has  been 
obtained also by matrix method studies; it differs, however, from the estimate of 
Baxter et al. a = 0.09 _+ 0.05. As far as we know ~, has  not  been calculated yet. 

KEY WORDS: Monte Carlo; hard-square lattice gas; critical exponents; 
entropy; pressure. 

1. INTRODUCTION 

Calculation of the entropy S with the commonly used Metropolis Monte 
Carlo (MC) (1~ simulation is difficult since entropy is related to the sampling 
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probability which is not provided by this procedure. An approximate 
technique for estimating entropy with any computer simulation method has 
been suggested recently by Meirovitch and applied very successfully to the 
MC simulation of the square Ising lattice (2) and the square lattice gas 
model. (3) For the lattice gas model (described in the framework of the 
canonical ensemble) very accurate estimates for the chemical potential /~ 
have been obtained by employing the method of Widom (4) and Jackson 
and Klein, (5'6) and a method suggested by Alexandrowicz. (7,s) These results 
for/z and S lead (using basic thermodynamic relations) to very accurate 
estimates also for the pressure p.(3) As far as we know this is the first time 
the pressure of a lattice gas has been calculated by MC, probably because 
the usual method for estimating P, based on the virial theorem, is not 
applicable to lattice systems. The new technique is based on an approxi- 
mate formula for the entropy in which the entropy is expressed as a 
function of the frequency of occurrence of certain local states. ~2) These 
frequencies are calculated from a single MC run, which makes this tech- 
nique substantially more efficient than the commonly used reversible 
thermodynamic integration. (9) Also, in contrast to the "multistage sam- 
pling ''(1~ and Salsburg's method (11) the accuracy of the new technique 
improves with increasing system size. It is also more accurate than other 
methods for estimating entropy (see Ref. 8 and methods reviewed by 
Binder in Ref. 12). The formula for the entropy and the definition of the 
local states are based on the concepts of the stochastic models (SM) 
method, which is a computer simulation technique independent of the 
commonly used MC procedure, suggested by Alexandrowicz. (13-15) Under- 
standing these concepts is therefore essential for applying the technique for 
the entropy to various systems. It should be pointed out that the entropy, in 
addition to being a measure of the extent of order in a system and an 
essential ingredient for calculating the pressure, leads to the free energy, 
which enables one to define the most stable state of a system as that with 
minimum free energy. This criterion is useful when two simulation runs 
lead the system to different free energy minima. The free energy enables 
one also to determine precisely the transition point in the case of a 
first-order phase transition, where two phases with the same free energy 
coexist.(16,17) 

In view of the wide interest in the calculation of entropy, of the lack of 
efficient calculation methods, and of the extremely accurate results ob- 
tained with the new technique for the Ising and lattice gas models, (2'3) it 
seems desirable to extend the technique to continuum models for fluids as 
well. For such systems, (e.g., the model of hard spheres), the volume will be 
divided into cells (much smaller than molecular size) and a discrete set of 
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local states will be defined by taking into account the various possible ways 
to occupy a certain group of cells with molecules. The continuum model is 
thus approximated by a lattice gas in which occupation of a cell necessi- 
tates the exclusion of molecules in several neighboring cells. Such exclusion 
has not been treated yet by the SM method nor does it exist in the lattice 
gas model studied previously, (3~ which only forbids double occupancy of a 
cell. We have therefore decided (before treating a complex continuum 
model) to test the efficiency of the technique for the MC simulation of the 
hard-square lattice gas with first neighbor exclusion, which is a simple 
model taking into account the effect of repulsion in a nontrivial manner. 
This model has been studied extensively by various approximate tech- 
niques(18 35); however, as far as we know, no detailed MC study of it has 
been published. Many of these studies (26-35) have shown that the model 
undergoes a second-order phase transition, and relatively accurate esti- 
mates for the critical values of the activity, the density, the pressure, and 
the entropy have been obtained. In this work the entropy and other 
thermodynamic quantities are calculated in both the canonical ensemble 
(CE) and the grand canonical ensemble (GCE). It should be pointed out 
that in the GCE, in contrast to the CE, the isothermal compressibility K T 
can be expressed as a function of the fluctuations in the density (36) and 
therefore can be conveniently calculated with the MC procedure. The MC 
results are compared to results obtained with Pad6 approximants (PA), 
based on the series expansion data of Gaunt and Fisher (GF) (26) and to 
results obtained by the matrix method. (27-29) We also suggest a new 
procedure for estimating the accuracy of our results based on calculating 
successive approximations for the entropy. 

In the second part of this work (which is independent of the entropy 
study), we calculate the critical exponents of the hard-square lattice gas. 
Ground-state symmetry considerations classify this model in the same 
universality class as the zero-field two-dimensional Ising lattice, which 
suggest that the two models have the same critical exponents. (37) However, 
these considerations are phenomenological and therefore an effort has been 
made in recent years to check their validity by calculating the critical 
exponents of the model, with various techniques. Indeed, GF (26) and 
Baxter, Enting, and Tsang (BET), (3~ using series expansion techniques, 
estimated with high credibility the Ising model value fl = 1/8, where fi is 
the critical exponent of the long-range order R; recent renormalization 
group studies (based on Nightingale method (38)) by R~icz, (32) Wood and 
Goldfinch, (33) and Kinzel and Shick (34) all estimate, with a very good 
approximation, the Ising model value ~ = 1, where ~ is the critical exponent 
of the correlation length. (39) Substituting this result in the hyperscaling 
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relation (39) d p =  ~ - 2 leads to the Ising model result ~ = 0, which means 
that the compressibility K r diverges logarithmically. However, GF did not 
find divergence of K r at the transition point and BET, who analyzed longer 
series, estimate a = 0.09 + 0.05, which led them to speculate about the 
possibility of a non-Ising model set of exponents. On the other hand, 
transfer matrix studies of Runnels, (27} Ree and Chesnut, (29} and Runnels 
and Comb (28) show that, to a high degree of accuracy, the maximum 
compressibility of finite-width strips is proportional to the logarithm of the 
width, i.e., the compressibility has a logarithmic singularity. Another sup- 
port for a logarithmic singularity is the estimate -0 .0196 < a < 0.0174 
made in Ref. 33. It should be pointed out that the critical exponent 7 of the 
staggered compressibility X + has not been estimated by any of these 
methods. In view of the controversy about the value of o~ and the lack of an 
estimate for 7 we calculate in this work the critical exponents of the model 
using the MC procedure. This can be carried out either by employing 
Fisher's finite-size scaling theory (4~ (see also Refs. 42-46) or by a 
method suggested recently by Swendsen. (47'48) In the present work we use 
Fisher's method, which, however, requires knowing the critical activity z c 
with sufficient accuracy. We do not attempt to calculate z c, which would 
need a lot of computer time, but rather use the relatively accurate estimate 
of BET (which is also very close to the estimates obtained by other 
methods{29'32}). At zc we carry out very long MC runs in the GCE for six 
lattices of size (L • L) from L = 12 to L = 64. The results for K r ,  X + and 
R enable us to estimate the corresponding critical exponents ~, "t, and fl, 
respectively, and also to obtain p. 

2. THEORY 

2.1. The Hard-Square Lattice Gas 

Consider a square lattice of V = L • L sites, each of which can be 
either empty or occupied by a molecule. There are N molecules on the 
lattice distributed among the V sites. The density of the molecules is 
defined as 0 = N ~  V. The multiple occupancy of sites is forbidden and the 
interaction potential is + ce for particles occupying nearest-neighbor sites 
but zero otherwise. At maximum density 0o = 1/2 the particles pack in a 
regular array on the sites of one sublattice, which we take to be the A 
sublattice; the second sublattice, B, is empty. Of special interest is the 
critical behavior of the compressibility K r,  the staggered compressibility 
X +, and the long-range order R which is determined by the critical 
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exponents a, y, and fl respectively. R is defined by 

R -- (Pa - Pb)/Po = 2(Pa -- Pb) (1) 

where pa and Ob are the sublattice densities and 

p = + Ob (2) 
In the GCE, K T and X + can be expressed as functions of the fluctuations in 
p(z) and R(z), respectively, where z is the activity, (36) 

k r o K  T = ((p(z) - <0(z)>) 2) V/<o(z)) (3) 

X + = ( (R(z )  - ( R ( z ) ) )  2) V/4  (4) 

In these equations k is the Boltzmann constant, T the absolute temperature, 
and ( ) denotes the GCE average. Estimations R for ( R ) ,  ~ for X +, etc. 
can be obtained from MC samples of M configurations: 

M 

R =  M--~ ~.~ R[ i(t) ] (5) 
t = l  

M 

~ - - - ( 4 M ) - ' V 2  { R [ i ( t ) ] -  R ) 2 (6) 
t = l  

here i(t) denotes the configuration i obtained at time t of the MC process. 
We estimate also the absolute value of R, by IR I, 

M 

IR[ = M - 1 2  IR[i(t)] I ( 7 )  
t = l  

2.2. Estimation of the Chemical Potential 

The chemical potential of the system, ~ ,  can be calculated either by a 
method suggested by Widom (4'6) and by Jackson and Klein (5) or, alterna- 
tively, by a method suggested recently by Alexandrowicz. (3'7'8) For the 
present model, however, the two methods are identical and give 

~ / k T  = log z s = - log((ov)) (8) 

where (Ov) denotes the average density (in the CE or the GCE) of vacant 
sites which are surrounded by nearest-neighbor vacant sites. An estimation 
~ for/~ is obtained similarly to Eqs. (5) and (6) by 

~, = - l o g  M - '  E Ov[i(t)] (9) 
t = l  



686 Meirovitch 

2.3. Calculation of the Entropy 

The entropy is estimated by means of a formula described recently for 
the square Ising lattice (2) and the square lattice gas model. (3) In this 
formula the entropy is expressed, approximately, as a function of the 
frequency of occurrence of certain local states, related to the occupancy of 
a site and its neighbor sites. This formula, derived on the basis of the SM 
method considerations (see Refs. 2, 14, and 15), is general in the sense that 
it does not depend on the model. The definition of the local states, 
however, changes from model to model. Since the hard-square lattice gas 
and the lattice gas previously studied (3) are both based on nearest-neighbor 
interactions and have the same geometry, their local states are very much 
the same. They differ only in the high-density regime where the anti- 
ferromagnetic-like long-range order of the hard squares should be taken 
into account. 

In the present work we employ four sets of local states which define 
four approximations for the entropy S 6, Slo, S6c, and S~0 L. These approxi- 
mations enable one to estimate the accuracy of our best approximation 
Slo E as will be discussed later. We shall describe now the local states for $6. 
Consider an aribitrary site k of the lattice and six of its neighbor sites, as 
illustrated by the solid circles in Fig. 1. Two of these neighbor sites are on 
the left side of site k within the same row I and the other four belong to the 
( l -  l)th row. Each site can be either occupied by a particle, or vacant, 
making up two different states, and therefore 26= 64 distinct local states 
are possible; however, in order to decrease their number we apply addi- 
tional approximation. For sites k - 2 and k - L + 3 we distinguish only 
between the three states (rather than four) vacant-vacant,  occupied- 
occupied, and vacant-occupied (see discussion in Refs. 1, 40, and 41). 
Therefore m = 3 • 2 4 =  48 local states of the above defined six sites are 

L 

k-L k-L+l k-L+2 k-L+:5 k-L+4, k-L+5 

L-, . . . . .  0 0 0 0 �9 �9 �9 �9 @ @ . . . . .  

k-4 k-3 k-2 k-i k 

L @ @ �9 �9 [ ]  o 0 o 0 0 

L*l O O 0 0 0 0 0 O 0 0 

Fig. 1. A diagram explaining the definition of the local states 1, + ;  I, - and 1, used for 
estimating the entropy [Eq. (10)]. The six solid circles around the central circle k denote the 
lattice sites which define the local states I for the lowest approximation of the entropy, $6; two 
of them are in the same row l as the central circle k while the other four belong to the 
preceding row l -  1. The solid and shaded circles (altogether 10) denote lattice sites around 
site k considered in the better approximation Sm. 
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defined (rather than 64) and are denoted by I, 1 ~ I < 48. The two states 
of the central site k need also to be taken into account and are denoted by 

- or + according to whether the site is empty or occupied, respectively. 
Hence altogether 2 • 48 = 96 local states are defined and denoted by I, + 
and I, - .  The ensemble frequencies of occurrence of local states I, / ,  + ,  
and I, - are denoted by v 1, vx,+, and Vz, _, respectively. It is shown in Ref. 
2 that an approximation S for the entropy can be defined by means of the 
local states frequencies: 

- ~ v~,+log(v~,+/v~) + vz, log(v~,_/v~) (10) S 
k N  I=l 

Vj = IJi,+"~-lJi,_ ( l l )  

We denote by S 6 the approximation based on six neighbor sites and 
m = 48, described above. It should be pointed out that because of the 
nearest-neighbor infinite repulsions many local states are excluded and the 
number of the allowed ones is much smaller than 48. The frequencies are 
calculated over a sample of M configuration, 

M 
VI,+ = ( M V ) - I  E Nl,+ [ i ( t ) ]  (12) 

t=l 
where Ni,+[i(t)] is the number of times local states I, + appear in configu- 
ration i, sampled at time t, just as in Eq. (5); ~1,- is defined in a similar 
way. Substituting the 96 vx, + and ~t,- into Eq. (10) gives an estimate for $6. 
Equation (10) defines local states up to a cutoff of six neighboring sites 
instead of the entire row of L lattice sites (k - L, k + L + 1 . . .  k - 1), 
which defines the exact set of local states (see discussion in Refs. 2, 14, and 
15); therefore $6/> Sexact' Obviously, the larger the number of sites consid- 
ered the better the representation of the long-range density correlations and 
hence the approximation (which means lower entropy). We define also a 
larger set of local states, based on the former six lattice sites and the four 
sites k - 3, k - 4, k - L + 4, and k - L + 5, illustrated by shaded circles 
in Fig. 1. As in the previous approximation we distinguish only between 
three states for sites k -  L + 5 and k -  4, and therefore the number of 
local states of type I is m = 3 • 28= 768. This approximation for the 
entropy based on 10 sites is denoted $10. 

The two sets of local states defined so far take into account short-range 
effects but ignore the long-range order which prevails at high densities. For 
example, if a site k (with local states I )  belongs to sublattice A (which is 
assumed to be more occupied than B) the probability of finding it occupied 
is larger than for a site on sublattice B with the same local state I. We take 
into account  the long-range order effect in the following way: in 
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addition to the "short-range" local states previously defined we define also 
two "long-range local states" for a site k, which are determined according 
to whether site k belongs to the more occupied sublattice or to the less 
occupied one. We therefore obtain two additional approximations for the 
entropy, based on S 6 and $10: One with m = 2 x 48 = 96 local states, which 
is denoted S6L, and the second with m = 2 • 768 = 1536, which we denote 

SIOL. 

2.4. Calculation of the Pressure 

The pressure P can be obtained from the free energy, the chemical 
potential, and the density by means of a basic thermodynamic relation (see 
Ref. 3). For the hard-square lattice gas, however, only the entropy contrib- 
utes to the free energy and therefore 

P / k r  = p(l~/kT + S / k N )  (13) 

Since/~ and S can be estimated by methods described in the previous 
sections, P can be estimated as well. 

3. RESULTS AND DISCUSSION 

3.1. Method of Calculation 

We impose on the lattice gas periodic boundary conditions and simu- 
late it with the MC procedure in both the CE (N, V, T) and the GCE 
(/~, V, T). In the CE the process is carried out as follows: one starts with a 
lattice filled with N randomly distributed molecules. In each step of the 
process a pair of occupied and vacant sites are selected at random with the 
help of a random number generator. If the move of the molecule from the 
occupied to the vacant site is forbidden another pair of such sites is 
selected. If the move is allowed a random number R, 0 < R < 1 is pro- 
vided, and the molecule exchanges sites if R < 0.5 and remains at its 
original site if R >/0.5. For p ~ Pc the lattice size is L = 80. The results 
were obtained from runs of nM= 1.44 • 108 MC steps where M = 15000 
constitutes the number of configurations [Eq. (5)] sampled at intervals of 
n = 1.5 • L 2 = 9600 MC steps. To exclude the relaxation to equilibrium 
from the starting configuration the averaging was started only after 0.6 • 
106 MC steps. 

The MC process in the GCE is started from a configuration with an 
arbitrary number of molecules distributed at random. The lattice sites are 
visited in a predefined order and a molecule is removed or added to each 
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site according to the following criteria: 
(a) If site k is vacant but excluded the next site is treated. 
(b) If k is a vacant not excluded site a molecule is added to it with 

probability Pro (v--vacant,  o--occupied):  

1 if z > 1 (14) 
Pvo = z if z < 1 

Obviously, site k remains vacant with probability Pvv = 1 - P , o -  
(c) If site k is occupied the molecule is removed or remains with 

probabilities Pov and Poo = 1 - Pov respectively: 

{~-1  if z > 1 (15) 
P o v = , .  if z < l  

Beyond the transition point we used L = 80 and performed n M =  2.88 • 
108 MC steps, where n = 3 • L 2 = 19200 and M = 15000. At the critical 
activity z c much longer MC runs were carried out (see Section 3.2.3). In 
order to exclude the relaxation to equilibrium the averaging was started 
after 1.92 • 107 M e  steps. 

3.2. Results 

The MC results obtained in the GCE (at z -~ Zc) and in the CE are 
summarized in Tables I and II, respectively. In Table III we present the 
GCE results calculated at the critical density z C for six lattices of size 
L = 12 to L = 64; this enables one to obtain the critical exponents. In order 
to compare the results of Tables I and II, the GCE simulations have been 
carried out a t / ,  values which lie within the statistical error of the values/,,  
appearing in Table II. For comparison we also provide estimates obtained 
from [6, 6] and [4, 4] PA (based on the series expansion data of GF) for the 
various thermodynamic quantities. One should bear in mind, however, that 
these estimates are approximate and their accuracy decreases as the transi- 
tion point is approached. 

3.2.1. Results for the Grand Canonical Ensemble. T h e  M C  

results calculated in the GCE at z v a zc are presented in Table I. It should 
be pointed out that/*s, Zs, O, R ,  K r and X + are defined by Eqs. (1)-(9) 
without any approximation and therefore their accuracy depends mainly on 
the sample size M and the lattice size L. However, the accuracy of the 
results for the entropy SI0L, Sl0, SL6, and S 6 and hence for the pressure P, 
is determined also by the extent of approximation imposed on Eq. (10), i.e., 
the definition of the local states. The PA estimates become inaccurate as 
the transition point is approached; for example: for / ,  = 1.241 the PA value 
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for X + is negative! And the PA estimate for 0, which according to Table II 
should be very close to 0.35, is 0.33. Some indication for unreliable results 
is the existence of significant difference between estimates of different PA 
(e.g. [6, 7], [6, 6], [7, 6] etc.). In fact, in the low-density regime close to the 
transition the estimates of the [7, 6] PA agree much better with the MC 
results than the values of the [6, 6] PA appearing in the table. 

The deviations of the average values of t~, from/~ are relatively small 
and range from 0.1% to 0.01%. The results for 0 should be very close to the 
corresponding values of 0 in Table II (see discussion in Section 3.1), and 
indeed the deviation is small, from 0.005% to 0.25%. The deviations of the 
average values of the MC results for 0 from the corresponding PA estimates 
are even smaller, except for/~ = 0.82272 and/~ -- 1.241. The MC and the 
PA results for R agree within 0.01% to 0.5%, and those for K r within 0.5% 
to 6% (again except for/~ = 0.82272 and ~ = 1.241). For X +, however, the 
two sets of results agree only far from z c, probably due to the inaccuracy in 
the PA estimates discussed above. 

Of special interest are the results obtained for the entropy. First, it 
should be noticed that in the low-density regime, where long-range order 
does not exist, S6L = 8 6 and $10 L = S10 , as expected. A slight deviation 
from this picture occurs only for t~ -- 1.241, but this stems probably from 
finite size effects near the transition point. However, in the high-density 
regime (where R > 0) the "long-range order local states" affect the entropy 
and SwL ~< $10; S~/~ ~< $6. For the low-density regime the results for S10L, 
$10, S6L, and S 6 are equal within the statistical error (except for ~ = 
0.82272); for the high-density regime $10 L = S6L within the statistical error. 
We can therefore assume that for these calculations S1oL is accurate with- 
in the statistical error [since imposing better approximation on Eq. (10) 
probably would not lower the entropy to a detectable extent, see discussion 
in Section 2.3]. The PA estimates for the entropy have been obtained from 

and the PA values for P and P, using Eq. (13). Except for/~ = 0.82272 
and /x-- 1.241 small deviations between the PA and the MC values are 
detected (from 0.05% to 0.2%), and this supports our previous estimation of 
the accuracy of the MC results for S. The MC results for the pressure have 
been obtained from S10L, /~ and 0, employing Eq. (13). Again, except for 
/x--0.82272 and /~ = 1.241, these results agree well with the PA values, 
where the deviations range from 0.01% to 0.05%. 

In Table III we present the GCE results for/~s, z,, 0, P, and S obtained 
at the critical activity zc (for details about the simulation see Section 3.2.3). 
For comparison we provide in the bottom rows of the table the critical 
values of these quantities obtained by Ree and Chesnut (29) and by BET 
and GF; in both rows the critical values for the entropy have been obtained 
by substituting/~s, 0, and P in Eq. (13). The agreement between the MC 
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values and the PA estimates is very good; for L = 64, the deviation is 
~0.08% for/z~, 0.3% for p, and 0.5% for the entropy, and the values for the 
pressure are equal within the statistical error, which is 0.6%. A comparable 
agreement is found also between the MC results and the results of Ref. 29. 

To summarize: very good agreement between the MC and the PA 
results for S, P, and p has been obtained at z ~ z c not too close to zc. 
However, we have given some indications that close to z~ the PA estimates 
are not accurate. The accuracy of the MC results for p, S, and P, however, 
is less affected in the critical region, as can be deduced from the good 
results obtained in Table III at z~ itself. We therefore have reason to believe 
that close to z~ the MC results are more accurate than the PA ones. 

3.2.2. Results for the Canonical Ensemble. Results obtained in 
the CE for given values of p are summarized in Table II. In this ensemble, 
in contrast to the GCE, we were not able to calculate K T and X + since they 
cannot be expressed as functions of fluctuations in p and R, respectively. 
Even though the same lattice size and approximately the same number of 
MC steps are used for both the CE and the GCE calculations the statistical 
error of the results for/~s for P/Oo > 0.4 is about an order of magnitude 
larger in Table II than in Table I. The statistical error of the entropy, 
however, is slightly lower than that detected in Table I, and the correspond- 
ing results for S are very close in the two tables. We have also calculated S 6 
and $6c in the CE and detected for them the same behavior as in Table I; 
therefore we present in Table II only $10 L and $10. The PA estimates for 
the entropy have been obtained directly from series expansion for S(p )  

derived by GF, and not with Eq. (13) as in Table I. The agreement between 
these estimates and the corresponding MC results is generally comparable 
to that of Table I. For P/Po = 0.6 and 0.7, however, the present results fit 
better, probably due to the more accurate PA values. The difference 
between the MC and PA results for R is also comparable to that which has 
been detected in Table I. The statistical error of the MC results for P, 
however, is affected by the relatively large statistical error in /x~ and 
therefore is about an order of magnitude higher than in Table I. 

We have simulated the system also at the critical density, Pc/00 = 
0.736, estimated by BET. For L = 80 the long-range order R did not 
change sign during the simulation (i.e., sublattice A was always more 
occupied than B); we therefore decreased the lattice size to L = 40 and R 
changed sign only once. The results at 0,. for L = 40, M = 15000, and 
n- -2400,  presented in the table, have been therefore obtained before a 
convergence has been detected. They are, however, very close to the 
corresponding results in Table III calculated at the critical activity z c 
(where R changed sign much faster). 
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To summarize: we find the simulation in the CE to be less efficient 
than in the GCE with respect to the system chemical potential, the pressure, 
and the long-range order at Pc. The accuracy of the results for the entropy, 
however, is found to be about the same for the two ensembles. 

3.2.3. The Critical Exponents. In Table III are presented the 
GCE results obtained at the critical activity zc = 3.7962 (estimated by 
BET), for six lattices of different size, from L = 12 to L = 64. Very long 
MC runs have been performed with M = 105 and n = 4L 2 (see Section 3.1). 
For each lattice the results are the averages of results obtained from several 
such MC runs with different starting configurations and different random 
number sequences. 

The critical exponents of X +, Kr ,  and R can be estimated by applying 
Fisher's finite-size scaling theory (4~ (see also Ref. 42-46) to their results 
in Table III. According to this theory X + should increase with L as 

X + = B L  ~/p at z c for large L (16) 

where 7 and u are the critical exponents of X + and the correlation length, 
respectively, (39) and B is a constant. A similar relation is expected for JR[ 
[Eq. (7)], - f l  replaces 7. (46~ 

A plot of loglR I vs logL (for 5 points excluding for L = 64) gave a 
straight line with a slope f l / p  = 0.125(5) and B = 0.90(1) (the indicated 
error, here and below, refers to the last decimal place). This slope is equal, 
within the statistical error, to the value f l - - 1 / 8  estimated with high 
credibility by both GF and BET and therefore suggests that u = 1. This 
value is in agreement with the renormalization group estimates for p of 
Refs. 32-34. At z c one would expect ( R )  to vanish; in the simulation, 
however, we have obtained several times R ~ 0 . 2  [Eq. (5)], due to imbalance 
in the population of sublattice A and b. We therefore present two sets of 
results for the staggered compressibility, X~- and X f ,  in which the fluctua- 
tions in R [see Eqs. (4) and (6)] are calculated around R and zero, 
respectively. For L = 24, L = 32, and L = 64 X~- differs significantly from 
X~-. Log-log plots of the results for X f  give better fit to a straight line than 
those for X1 +, and therefore we use them for our analysis. A slope y / t ,  = 
1.74(2) with B = 0.22(1) is obtained from five points excluding L = 64 
(however, for L = 64 the best straight line passes very close to the MC 
value 310). This slope is very close to 7 = 1.75 known for the two- 
dimensional Ising lattice (39) and we therefore assume 7 = 1.75 also for the 
hard-square lattice gas, which is consistent also with our suggestion p = 1. 
For the compressibility K T we apply a slightly different analysis. In order to 
check the possibility of both, a logarithmic (a---0)  and an exponential 
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divergence (a > 0), we fit the data (excluding for L = 64) to the function 
used by Domany e ta / .  (49) 

KT = B__ (L ~ _ 1) + A (17) 
a 

where B and A are constants. Obviously, when a ~ 0 this function becomes 

K~ -- B l o g L  + A (18) 

The best fit of the average results for Kr  has been obtained for B = 
0.10646, A = 0.11563, and a = 0.000016, which means that the behavior is 
approximately logarithmic. Substituting L = 64 in Eq. (17) gives 0.558, 
which is very close to the MC value 0.56. For comparison, Ree and 
Chesnut (29) obtained A = 0.10849 and B = 0.12372 by fitting their data to 
Eq. (18). It should be pointed out, however, that our fit is based on the 
average values of KT and does not take into account the statistical error. 
Hence in order to increase the accuracy of the above result larger lattices 
should be studied for larger samples. 

It should be pointed out that finite-size scaling (4~ applies to asymp- 
totically large systems at the exact critical activity of the infinite system, 
whereas we use here relatively small lattices and an approximate value for 
z c. However, the fact that the log-log plots of the results give straight lines 
indicates that the size L = 12, of the smallest lattice, as well as the accuracy 
of zc are already sufficient. This conclusion is supported also by matrix 
method studies ~28'29) which have used the present analysis with a slightly 
different value for z~ and obtained the same critical behavior for K T. 

To summarize: our data for the hard-square lattice gas model is 
consistent with the critical exponents of the zero-field plane Ising model, 
/3 = 1/8, p = 1, y = 7/4,  and a -  0. These results are in accord with 
ground-state symmetry considerations of Domany et aL ~37) which classify 
these two models in the same universality class. Our estimate for 13 agrees 
with the results of GF and BET. p = 1 has been estimated also by R/tcz, (32~ 
Wood and Goldfinch, (33) and Kinzel and Schick, (34) using renormalization 
group techniques. The result a --- 0 agrees with the matrix method results of 
Refs. 27-29 and with the estimation carried out in Ref. 33, but  differs from 
a = 0.09(5) obtained by BET. As far as we know this is the first time 3' has 
been calculated by any method. 

3.3. Conclusions 

In this work a MC study of the entropy, the chemical potential, and 
other thermodynamic quantities has been carried out for the hard-square 
lattice gas. The entropy has been calculated by an approximate method 
suggested recently by Meirovitch, (2) the chemical potential by Widom's 
method, (4'5) and the pressure from /~ and S using basic thermodynamic 
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relations. The system has been simulated close to and at the transition point 
itself, in both the canonical and the grand canonical ensembles. The MC 
results are in a very good agreement with the Pad6 approximant estimates, 
and we argue that close to the transition point our results are more 
accurate. For example, at the critical activity z c the estimates of the two 
methods for the entropy differ by 0.5%. Beyond zc this deviation decreases 
to 0.01%. Similar accuracy is detected for the pressure calculated in the 
grand canonical ensemble. The accuracy of the entropy in the canonical 
and the grand canonical ensembles is about the same, whereas the chemical 
potential and the pressure are about an order of magnitude more accurate 
in the grand canonical ensemble than in the canonical ensemble. The high 
accuracy of the results obtained for the hard-square lattice gas gives reason 
to believe that the present technique for calculating the entropy will also be 
applicable to continuum models for fluids. It should be pointed out that 
these results for the entropy, obtained with relatively small sets of local 
states, demonstrate the local character of entropy even at the transition 
point, in contrast to the second derivatives of the entropy, K r and X +, 
which are highly dependent on long-range correlations. A better accuracy 
can be achieved by using better approximations for the entropy [Eq. (10)] 
and enlarging both lattice and sample size. We have calculated also other 
thermodynamic quantities such as the compressibility, long-range order, 
etc. and found very good agreement with the Pad6 approximants results, 
not too close to the transition point. At z c we employ Fisher's finite-size 
scaling theory (4~ to the MC results of several lattices. The data are 
consistent with the critical exponents of the Ising model /3 = 1/8, v = 1, 
~, = 7/4,  and a = 0, supporting the ground-state symmetry considerations 
of Domany et a/. (37) The values for/3 and v agree with estimates of other 
studies. As far as we know ~, has not been estimated yet and a = 0 agrees 
with the matrix method and renormalization groups results, but differs 
from the series expansion estimates a--0.09(5) ,  obtained by BET. These 
results demonstrate that MC constitutes an important tool for calculating 
critical exponents which is complementary to other numerical techniques. 
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